BIFUNCTIONAL CHIRAL SYNTHONS VIA BIOCHEMICAL METHODS.

5. PREPARATION OF (S)-ETHYL HYDROGEN-3-HYDROXYGLUTARATE, KEY INTERMEDIATE
TO (R)-4-AMINO-3-HYDROXYBUTYRIC ACID AND L-CARNITINE.¹

Aravamudan S. Gopalan and Charles J. Sih* School of Pharmacy, University of Wisconsin, 425 N. Charter St., Madison, WI 53706

Microbial enantioselective hydrolysis of diethyl-3-hydroxyglutarate afforded (S)-ethyl hydrogen-3-hydroxyglutarate, which was transformed into (R)-4-amino-3-hydroxybutyric acid and L-carnitine, via a Curtius and Hunsdiecker rearrangement, respectively.

The effectiveness of L-carnitine $(\underline{1})$ in the treatment of systemic and myopathic deficiencies is now well recognized. 2 (R)-4-Amino-3-hydroxybutyric acid $(\underline{2})$, a chiral precursor of $\underline{1}^3$, is itself a useful antiepileptic drug. 4 As tedious kinetic resolution methods are currently employed in their preparation 5 , interest in developing improved asymmetric syntheses of these substances has risen steadily. Thus far, a few asymmetric syntheses of $\underline{1}$ and $\underline{2}$ using carbohydrates as chiral starting materials have been reported. 6 Recently, we reported a synthesis of L-carnitine 7 based on stereochemical control of yeast reductions of γ -chloro- β -keto esters. As part of our continuing interest in the application of biochemical systems to asymmetric synthesis, we herein describe a novel synthesis of $\underline{1}$ and $\underline{2}$ from the chiral precursor, (S)-ethyl hydrogen-3-hydroxyglutarate ($\underline{3}$), which is readily derived via microbial enantioselective hydrolysis of diethyl-3-hydroxyglutarate ($\underline{4}$).

$$CH_3^{-1} \stackrel{CH_3}{\underset{CH_3}{\overset{OH}{\longrightarrow}}} \stackrel{H}{\underset{CH_3}{\overset{OH}{\longrightarrow}}} \stackrel{H}{\underset{CO_2}{\overset{OH}{\longrightarrow}}} \stackrel{CO_2^{-1}}{\underset{CH_3}{\overset{OH}{\longrightarrow}}} \stackrel{H}{\underset{CH_3}{\overset{OH}{\longrightarrow}}} \stackrel{H}{\underset{$$

Asymmetric hydrolysis of $\underline{4}$ by α -chymotrypsin to give (R)-ethyl hydrogen-3-hydroxyglutarate (5) had been recorded many years ago. The reaction is believed to be highly enantioselective. However, the rate of hydrolysis is very slow. Hence, a substantial quantity of α -chymotrypsin is required to complete the reaction (substrate to enzyme weight ratio was 2:1). In contrast, pig liver esterase 10 catalyzed rapid hydrolysis of $\underline{4}$ to give (S)-ethyl hydrogen-3-hydroxyglutarate ($\underline{3}$) of low optical purity. Further, while both (+) and (-)-methyl hydrogen β -acetoxyglutarate can be prepared by chemical resolution methods these processes are tedious and give low yield of the chiral product. Although $\underline{3}$ is a useful chiron until now it has not been readily accessible.

The above disadvantages prompted us to examine the enantioselective hydrolysis of $\underline{4}$ by various microorganisms and the results are tabulated in Table 1. Whereas most microorganisms hydrolyzed the <u>pro-R</u> ester grouping of $\underline{4}$ to yield $\underline{3}$ of high optical purity in good yields, Acinetobacter lowfii preferentially cleaved the <u>pro-S</u> ester grouping of $\underline{4}$ selectively to afford 5. Similar results were obtained using dimethyl-3-hydroxyglutarate as the substrate.

Microorganism	Yield %	Stereochemical preference	Product	eea
Arthrobacter sp (ATCC 19140)	38	<u>Pro-R</u>	\$	>0.69
Corynebacterium equi (IFO-3730)	70	Pro-R	S	>0.97
Acinetobacter lowfii	70	Pro-S	R	>0.80
Soil isolate S-29	54	Pro-S	R	0.77

Table 1. Microbial enantioselective hydrolysis of 4.

Each of the microorganisms 11 was exposed to 2 g/L of 4 for 48 hours.

^aEnantiomeric excess was determined by comparison with the optical rotation of $\underline{5}$ reported in the literature⁹.

A sample of (S)-ethyl hydrogen-3-hydroxyglutarate, $\left[\alpha\right]_0^{23}$ +1.24° (c, 9.7 in acetone), obtained from the fermentation of diester $\underline{4}$ with $\underline{\text{Arthrobacter sp}}$ (ATCC 19140) was acetylated (Ac₂0, pyr.) to give $\underline{6}$. Treatment of $\underline{6}$ with oxalyl chloride in benzene at 6°C afforded the acid

chloride $\underline{7}$. Reaction of $\underline{7}$ with sodium azide in aqueous acetone at 0°C yielded $\underline{8}$. On refluxing with benzene for 70 hours, the acid azide $\underline{8}$ underwent slow Curtius rearrangement to give the isocyanate $\underline{9}$, as a brown oil. Hydrolysis of $\underline{9}$ (18% HCl, 100° - 110° C, 4 hrs) afforded $\underline{2}$, isolated by chromatographing the crude residue over a Dowex (1-X4, $^{\circ}$ 0H) column (2 x 7 cm). Elution of the column with 15% NH₄0H gave $\underline{2}$ as a white crystalline solid (36% from $\underline{3}$, $[\alpha]_0^{23}$ -12.56°, H₂0, mp 205-207°C). The easy conversion of $\underline{2}$ into L-carnitine $\underline{1}$ by methylation is already well established.

A sample of (S)-monoacid, $\underline{3}$, $[\alpha]_D$ +1.75° (c, 7.9 in acetone), obtained from fermentation of the diester $\underline{4}$ with <u>Corynebacterium equi</u> (IFO-3730) was directly converted to L-carnitine ($\underline{1}$) in the following manner. Acetylation (Ac₂0, pyr.) gave the acetate $\underline{6}$, $[\alpha]_D^{23}$ -6.23° (c, 2.36 in CHCl₃), which was then subjected to the Hunsdiecker rearrangement¹² (Hg0, CCl₄, Br₂). The

bromide $\underline{10}$ was isolated in 46% yield after chromatography ($[\alpha]_D$ +16.22°; c, 4.58 in CHCl $_3$). Direct coupling of the bromoacetate $\underline{10}$ with excess aqueous trimethylamine afforded L-carnitine ($\underline{1}$) accompanied by a considerable quantity of crotonylbetaine ($\underline{11}$). Hence, it was necessary to deprotect the acetate prior to successful coupling. Deprotection of the acetate $\underline{11}$ was readily achieved by means of an exchange reaction (EtOH, cat. HCl) to give the bromohydrin $\underline{12}$, $[\alpha]_D$ +13.8° (c, 1.22 in CHCl $_3$), in 50% yield. The enantiomeric purity of $\underline{12}$ was proved to be 96:4 by means of its MTPA-ester analysis. 13 Coupling of the bromohydrin $\underline{12}$ with excess trimethylamine and subsequent Dowex-OH chromatography, gave L-carnitine ($\underline{1}$), $[\alpha]_D^{23}$ -27.1° (\underline{H}_20), in 50% yield.

Acknowledgment

This investigation was supported in part by Grant HL25772 of the National Institutes of Health.

References and Notes

- 1) For part 4 of this series, see: Y. F. Wang and C. J. Sih, <u>Tetrahedron Lett.</u>, submitted for publication.
- P. Borum, <u>Nutrition Revs.</u> 39, 385 (1981); P. R. Chapoy, C. Angelini, W. J. Brown, J. E. Stiff, A. L. Shug and S. D. Cederbaum, <u>New Eng. J. Med.</u> 303, 1389 (1980).
- 3) T. Kaneko and R. Yoshida, Bull. Chem. Soc. Japan 35, 1153 (1962).
- 4) D. DeMaio, A. Madeddu and L. Faggioli, <u>Acta Neurol</u>. <u>16</u>, 366 (1961); G. A. Buscaino and E. Ferrari, ibid. 16, 748 (1961).
- M. Pinza and G. Pifferi, <u>J. Pharm. Sci. 67</u>, 120 (1978); K. Balenovic and I. Jambresic, <u>J. Org. Chem.</u> 19, 1589 (1954); F. D'Alo and A. Masserini, <u>Farmaco. Ed. Sci. 19</u>, 30 (1964).
- M. E. Jung and T. J. Shaw, <u>J. Am. Chem. Soc.</u> <u>102</u>, 6304 (1980); K. Bock, I. Lundt and C. Pedersen, <u>Acta Chem. Scand.</u> <u>37</u>, 341 (1983).
- B. N. Zhou, A. S. Gopalan, F. VanMiddlesworth, W. R. Shieh and C. J. Sih, <u>J. Am. Chem. Soc.</u> 105, 5925 (1983).
- 8) K. Serck-Hanssen, Arkiv för Kemi, Bd 10, nr 4, 135 (1956).

- 9) S. G. Cohen and E. Khedouri, J. Am. Chem. Soc. 83, 4228 (1961).
- 10) P. Mohr, N. W. Sarcevie, C. Tamm, K. Gawronska and J. K. Gawronski, <u>Helv. Chim. Acta 66</u>, 2501 (1983); A. S. Gopalan and C. J. Sih, unpublished results; D. Brooks and J. Palmer, Tet. Lett., 3059 (1983).
- 11) Conditions for microbial conversions were carried out as follows: The surface growth from an agar slant of the bacterium was transferred to a 125 ml Erlenmeyer flask containing 25 ml of Difco nutrient broth. After incubation at 25°C on a rotary shaker (250 cycles/min 2" radius) for 24 hours, the contents were transferred to a 2 L Erlenmeyer flask containing 500 ml of Difco nutrient broth. After incubation for a further 24 hours, the diester 4 was added as an emulsion consisting of 1 g of substrate suspended in 10 ml of 3% Tween 80 solution. After 48 hours, the incubation mixture was acidified to pH 3 with 6 N HCl and extracted several times with ethyl acetate. Chromatography of the crude residue on a silica gel column gave the desired chiral monoacid 3 or 5.
- 12) S. J. Cristol and W. C. Firth, Jr., J. Org. Chem. 26, 280 (1961).
- 13) J. Dale, D. Dull and H. Mosher, J. Org. Chem. 34, 2543 (1969).

(Received in USA 13 August 1984)